1 Express $3\cos\theta + 4\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$.

Hence find the range of the function $f(\theta)$, where

$$f(\theta) = 7 + 3\cos\theta + 4\sin\theta$$
 for $0 \le \theta \le 2\pi$.

Write down the greatest possible value of $\frac{1}{7 + 3\cos\theta + 4\sin\theta}$. [6]

2 Express 3 sin $x + 2 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$

Hence find, correct to 2 decimal places, the coordinates of the maximum point on the curve y = f(x), where

$$f(x) = 3\sin x + 2\cos x, \ 0 \le x \le \pi.$$
^[7]

3 Show that
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta.$$
 [3]

- 4 The angle θ satisfies the equation $\sin(\theta + 45^\circ) = \cos \theta$.
 - (i) Using the exact values of $\sin 45^\circ$ and $\cos 45^\circ$, show that $\tan \theta = \sqrt{2} 1$. [5]
 - (ii) Find the values of θ for $0^{\circ} < \theta < 360^{\circ}$. [2]

5 Solve the equation $2\sin 2\theta + \cos 2\theta = 1$, for $0^{\circ} \le \theta < 360^{\circ}$. [6]

PhysicsAndMathsTutor.com

6 Express $6\cos 2\theta + \sin \theta$ in terms of $\sin \theta$.

Hence solve the equation
$$6\cos 2\theta + \sin \theta = 0$$
, for $0^{\circ} \le \theta \le 360^{\circ}$. [7]

7 (i) Show that
$$\cos(\alpha + \beta) = \frac{1 - \tan \alpha \tan \beta}{\sec \alpha \sec \beta}$$
. [3]

(ii) Hence show that
$$\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$$
. [2]

(iii) Hence or otherwise solve the equation
$$\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1}{2}$$
 for $0^\circ \le \theta \le 180^\circ$. [3]

8 In Fig. 6, OAB is a thin bent rod, with OA = a metres, AB = b metres and angle OAB = 120°. The bent rod lies in a vertical plane. OA makes an angle θ above the horizontal. The vertical height BD of B above O is h metres. The horizontal through A meets BD at C and the vertical through A meets OD at E.

(i) Find angle BAC in terms of θ . Hence show that

$$h = a\sin\theta + b\sin(\theta - 60^\circ).$$
 [3]

(ii) Hence show that
$$h = (a + \frac{1}{2}b)\sin\theta - \frac{\sqrt{3}}{2}b\cos\theta$$
. [3]

The rod now rotates about O, so that θ varies. You may assume that the formulae for h in parts (i) and (ii) remain valid.

- (iii) Show that OB is horizontal when $\tan \theta = \frac{\sqrt{3}b}{2a+b}$. [3]
- In the case when a = 1 and b = 2, $h = 2\sin\theta \sqrt{3}\cos\theta$.
- (iv) Express $2\sin\theta \sqrt{3}\cos\theta$ in the form $R\sin(\theta \alpha)$. Hence, for this case, write down the maximum value of *h* and the corresponding value of θ . [7]
- 9 (i) Express $\cos \theta + \sqrt{3} \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and α is acute, expressing α in terms of π . [4]
 - (ii) Write down the derivative of $\tan \theta$.

Hence show that
$$\int_{0}^{\frac{1}{3}\pi} \frac{1}{(\cos\theta + \sqrt{3}\sin\theta)^2} \, \mathrm{d}\theta = \frac{\sqrt{3}}{4}.$$
 [4]

PhysicsAndMathsTutor.com