1 Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
Hence find the range of the function $f(\theta)$, where

$$
f(\theta)=7+3 \cos \theta+4 \sin \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi
$$

Write down the greatest possible value of $\frac{1}{7+3 \cos \theta+4 \sin \theta}$.

2 Express $3 \sin x+2 \cos x$ in the form $R \sin (x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
Hence find, correct to 2 decimal places, the coordinates of the maximum point on the curve $y=\mathrm{f}(x)$, where

$$
\begin{equation*}
\mathrm{f}(x)=3 \sin x+2 \cos x, \quad 0 \leqslant x \leqslant \pi \tag{7}
\end{equation*}
$$

3 Show that $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta$.

4 The angle θ satisfies the equation $\sin \left(\theta+45^{\circ}\right)=\cos \theta$.
(i) Using the exact values of $\sin 45^{\circ}$ and $\cos 45^{\circ}$, show that $\tan \theta=\sqrt{2}-1$.
(ii) Find the values of θ for $0^{\circ}<\theta<360^{\circ}$.

5 Solve the equation $2 \sin 2 \theta+\cos 2 \theta=1$, for $0^{\circ} \leqslant \theta<360^{\circ}$.

6 Express $6 \cos 2 \theta+\sin \theta$ in terms of $\sin \theta$.
Hence solve the equation $6 \cos 2 \theta+\sin \theta=0$, for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

7 (i) Show that $\cos (\alpha+\beta)=\frac{1-\tan \alpha \tan \beta}{\sec \alpha \sec \beta}$.
(ii) Hence show that $\cos 2 \alpha=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}$.
(iii) Hence or otherwise solve the equation $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1}{2}$ for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$. [3]

8 In Fig. 6, OAB is a thin bent rod, with $\mathrm{OA}=a$ metres, $\mathrm{AB}=b$ metres and angle $\mathrm{OAB}=120^{\circ}$. The bent rod lies in a vertical plane. OA makes an angle θ above the horizontal. The vertical height BD of B above O is h metres. The horizontal through A meets BD at C and the vertical through A meets OD at E.

Fig. 6
(i) Find angle BAC in terms of θ. Hence show that

$$
\begin{equation*}
h=a \sin \theta+b \sin \left(\theta-60^{\circ}\right) . \tag{3}
\end{equation*}
$$

(ii) Hence show that $h=\left(a+\frac{1}{2} b\right) \sin \theta-\frac{\sqrt{3}}{2} b \cos \theta$.

The rod now rotates about O , so that θ varies. You may assume that the formulae for h in parts (i) and (ii) remain valid.
(iii) Show that OB is horizontal when $\tan \theta=\frac{\sqrt{3} b}{2 a+b}$.

In the case when $a=1$ and $b=2, h=2 \sin \theta-\sqrt{3} \cos \theta$.
(iv) Express $2 \sin \theta-\sqrt{3} \cos \theta$ in the form $R \sin (\theta-\alpha)$. Hence, for this case, write down the maximum value of h and the corresponding value of θ.

9 (i) Express $\cos \theta+\sqrt{3} \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and α is acute, expressing α in terms of π.
(ii) Write down the derivative of $\tan \theta$.

Hence show that $\int_{0}^{\frac{1}{3} \pi} \frac{1}{(\cos \theta+\sqrt{3} \sin \theta)^{2}} \mathrm{~d} \theta=\frac{\sqrt{3}}{4}$.

